
PDef
(Parenthesized Definitions)

PDef: Parenthesized Definitions

Finite State Machines 2

FSM for PDef

Finite State Machines 3

FSM for PDef

Finite State Machines 4

Theory to Practice
• Need to represent the states, represent transitions between

states, consume input, and restore input
• Create an enumerated type whose values represent the FSM

states: Start, Int, Float, Zero, Done, Error, …
• Keep track of the current state and update based on the state

transition

Finite State Machines

state = Start;
while (state != Done) {

ch = input.getSymbol();
switch (state) {

case Start: // select next state based on current input symbol
case S1: // select next state based on current input symbol
..
case Sn: // select next state based on current input symbol
case Done: // should never hit this case!

}
}

5

Finite State Machines

while (state != StateName.DONE_S) {
char ch = getChar();
switch (state) {

case START_S:
if (ch == ' ') {

state = StateName.START_S;
}
else if (ch == eofChar) {

type = Token.TokenType.EOF_T;
state = StateName.DONE_S;

}
else if (Character.isLetter(ch)) {

name += ch;
state = StateName.IDENT_S;

}
else if (Character.isDigit(ch)) {

name += ch;
if (ch == '0') state = StateName.ZERO_S;
else state = StateName.INT_S;

}
else if (ch == '.') {

name += ch;
state = StateName.ERROR_S;

}
else {

name += ch;
type = char2Token(ch);
state = StateName.DONE_S;

}
break;

6

Project 1: Tokenizer for PDef
• Essentially, we are following along with the chapter 12 tutorial. I

provide specific details / hints in the README
• Starter code is on GitHub
• Already a ‘working’ Java program (runs, but not correct output)
• Consists of:

Java

├── .gitignore
├── PDef.java
├── README.md
├── debug
│ ├── Debug.java
│ └── TokenizerDebug.java
├── test
├── test2
└── tokenizer

├── Token.java
└── Tokenizer.java

You are responsible for testing your
code with various input (make new
test files) and for submitting your
working program to GitHub by the
due date. Programs that do not
compile will not receive any credit.

A brief history
• Developed by James Gosling (”Dr. Java”) at Sun Microsystems
• 1990s: First release
• 2000s: Sun Microsystems was acquired by Oracle

• Grown from a few hundred classes in the JDK (Java Development
Kit) to thousands.

• Mascot: Duke

Java

Java: the programming language
• Program is both compiled and interpreted
• Compiler translates program into intermediate platform-

independent language
• Compilation happens once
• Creates machine instructions for Java Virtual Machine (JVM)

• Interpreter parses and runs each Java bytecode instruction
• Interpretation happens each time program is executed
• Interpreter is implementation of JVM

Java

“write once,
run anywhere”

Some differences compared to C++
• Mainly for application programming, including web-based and

mobile applications
• No operator overloading
• Not really pointers (restricted support, no pointer arithmetic)
• No call by reference
• No destructors
• Automatic garbage collection
• Single class inheritance
• Javadoc (comparable to Doxygen)
• Basically everything is an object, except fundamental types

• Also important: keep the class name the same as the file name!

Java

Examples…

Java

